Augmenting the Immersed Boundary Method with Radial Basis Functions (RBFs) for the Modeling of Platelets in Hemodynamic Flows

نویسندگان

  • Varun Shankar
  • Grady B. Wright
  • Robert Michael Kirby
  • Aaron L. Fogelson
چکیده

We present a new computational method by extending the immersed boundary (IB) method with a geometric model based on parametric radial basis function (RBF) interpolation of the Lagrangian structures. Our specific motivation is the modeling of platelets in hemodynamic flows, although we anticipate that our method will be useful in other applications involving surface elasticity. The efficacy of our new RBF-IB method is shown through a series of numerical experiments. Specifically, we test the convergence of our method and compare our method with the traditional IB method in terms of computational cost, maximum stable time-step size, and volume loss. We conclude that the RBF-IB method has advantages over the traditional IB method and is well-suited for modeling of platelets in hemodynamic flows. Copyright © 2015 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method

The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid-structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. M...

متن کامل

Determination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions

In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...

متن کامل

The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

متن کامل

An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

متن کامل

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1304.7479  شماره 

صفحات  -

تاریخ انتشار 2013