Augmenting the Immersed Boundary Method with Radial Basis Functions (RBFs) for the Modeling of Platelets in Hemodynamic Flows
نویسندگان
چکیده
We present a new computational method by extending the immersed boundary (IB) method with a geometric model based on parametric radial basis function (RBF) interpolation of the Lagrangian structures. Our specific motivation is the modeling of platelets in hemodynamic flows, although we anticipate that our method will be useful in other applications involving surface elasticity. The efficacy of our new RBF-IB method is shown through a series of numerical experiments. Specifically, we test the convergence of our method and compare our method with the traditional IB method in terms of computational cost, maximum stable time-step size, and volume loss. We conclude that the RBF-IB method has advantages over the traditional IB method and is well-suited for modeling of platelets in hemodynamic flows. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method
The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid-structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. M...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کاملThe use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1304.7479 شماره
صفحات -
تاریخ انتشار 2013